Pseudomonas aeruginosa: A Current update on biofilm formation, immune response and antibiotic resistance

Neha Rawat, Sunita Sheoran, Mukesh Sharma, SD. Shahanawaz, Amir Mahgoub Awadelkareem, Angum M.M. Ibrahim, Syed Amir Ashraf

Abstract


Pseudomonas aeruginosa is a Gram-negative bacillus found ubiquitously in nature and is known to cause life-threatening infections. A prime example of an opportunistic pathogen, P. aeruginosa is responsible for infections in environmental, industrial, and hospital settings. It has been classified as one of the “superbugs” involved in nosocomial infections and is a member of the ESKAPE pathogen group. Its virulent nature makes it a potent causative organism in both device-associated infections (such as catheter-associated bloodstream and urinary tract infections) and non-device-related infections (such as cystic fibrosis, otitis media, keratitis, and ventilator-associated pneumonia). Despite the use of various antimicrobial agents against P. aeruginosa, complications from hospital-acquired infections persist. Multiple studies have demonstrated,  P. aeruginosa readily forms biofilms during prolonged infections, making treatment more challenging. This can be attributed to the fact that antibiotics are less effective against microbial biofilms. P. aeruginosa possesses several virulence factors, including lipopolysaccharides, extracellular polysaccharides (EPS), and toxin secretion systems such as the type III secretion system (T3SS), which evade host immunity and compete with other bacteria. The synergistic effect of these factors, along with biofilm formation, protects the pathogen from host immune defenses and reduces the efficacy of antimicrobial agents. This review provides a conceptual framework for understanding the association between microbial biofilms and host immune responses. Additionally, it emphasizes the critical need to address P. aeruginosa biofilms to improve patient outcomes and reduce hospital-acquired infections.

Keywords: Biofilm; Immune response; Host interaction; Pseudomonas aeruginosa; Device-related biofilm


Full Text:

PDF

References


Preda VG, Săndulescu O. Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries (Craiova, Romania), (2019); 7(3), e100.

Singh S, Datta S, Narayanan KB, Rajnish KN. Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. Journal Genetic Engineering & Biotechnology, (2021); 23;19(1):140.

Donlan RM. Biofilm on central venous catheters: is eradication possible. Current Topics in Microbiology and Immunology, (2008); 322:133-161.e02192.

Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, et al. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Frontiers in Immunology, (2021); 12, 625597.

Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa biofilm: A Review. Pathogens, (2022); 11: 300.

Mauch RM, Jensen PØ, Moser C, Levy CE, Høiby N. Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis. Journal of Cystic Fibrosis, (2018); 17(2):143-152.

Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel), (2020); 9(2):59.

Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa Lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology. (2017); 15;7:39.

Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: Host response and clinical implications in lung infections. American Journal of Respiratory Cell and Molecular Biology, (2018); 58(4):428-439.

Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D. Enzymatic dispersion of biofilms: an emerging bio-catalytic avenue to combat biofilm-mediated microbial infections. Journal of Biological Chemistry, (2022);298:102352.

Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences, (2020);21(22):8671.

Hanke ML, Kielian T. Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. Frontiers in Cellular and Infection Microbiology, (2012); 2:62.

Malhotra S, Hayes D Jr, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clinical Microbiology Reviews, (2019); 29;32(3):e00138-18.

Head K, Chong LY, Bhutta MF, Morris PS, Vijayasekaran S, et al. Topical antiseptics for chronic suppurative otitis media. Cochrane Database of Systematic Reviews, (2020); 6;1(1):CD013055.

Juyal D, Sharma M, Negi V, Prakash R, Sharma N. Pseudomonas aeruginosa and its sensitivity spectrum in chronic suppurative otitis media: A study from Garhwal hills of Uttarakhand State, India. Indian Journal of Otology, (2017); 23(3), p.180.

Jensen RG, Johansen HK, Bjarnsholt T, Eickhardt-Sørensen SR, et al. Recurrent otorrhea in chronic suppurative otitis media: is biofilm the missing link?. European Archives of Oto-rhino-laryngology, (2017); 274(7):2741-2747.

Galli J, Calo L, Giuliani M, Sergi B, Lucidi D, et al. Biofilm’s role in chronic cholesteatomatous otitis media: A pilot study. Otolaryngology--head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery, (2016);154(5):914–916.

Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, et al. A review of the scientific evidence for biofilms in wounds. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society, (2012);20(5):647-57.

Nagoba B, Davane M, Gandhi R, Wadher B, Suryawanshi N, et al. Treatment of skin and soft tissue infections caused by Pseudomonas aeruginosa—A review of our experiences with citric acid over the past 20 years. Wound Medicine, (2017); 19: 5-9.

Asati S, Chaudhary U. Prevalence of biofilm producing aerobic bacterial isolates in burn wound infections at a tertiary care hospital in northern India. Annals of Burns and Fire Disasters, (2017); 31;30(1):39-42.

Awadelkareem AM, Al-Shammari E, Elkhalifa AO, Adnan M, Siddiqui AJ, et al. Biosynthesized silver nanoparticles from Eruca sativa Miller leaf extract exhibits antibacterial, antioxidant, anti-quorum-sensing, antibiofilm, and anti-metastatic activities. Antibiotics (Basel), (2022); 25;11(7):853.

Alhede M, Bjarnsholt T, Givskov M. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Advances in Applied Microbiology, (2014);86:1-40.

Sands KM, Wilson MJ, Lewis MAO, Wise MP, Palmer N, et al. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. Journal of critical care, (2017);37:30-37.

Rodrigues ME, Lopes SP, Pereira CR, Azevedo NF, Lourenço A, et al. Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy. PLoS One, (2017); 23;12(1):e0170433.

Pruthi V, Al-Janabi A, Pereira BM. Characterization of biofilm formed on intrauterine devices. Indian Journal of Medical Microbiology, (2003); 21(3):161-165.

Pelling H, Nzakizwanayo J, Milo S, Denham EL, MacFarlane WM, et al. Bacterial biofilm formation on indwelling urethral catheters. Letters in Applied Microbiology, (2019); 68(4):277-293.

Wang S, Xiang D, Tian F, Ni M. Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses. Journal of Medical Microbiology, (2021);70(4).

Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences, (2021); 18; 22(6).

Jouault A, Saliba AM, Touqui L. Modulation of the immune response by the Pseudomonas aeruginosa type-III secretion system. Frontiers in cellular and infection microbiology, (2022); 28;12:1064010.

Berclaz PY, Carey B, Fillipi MD, Wernke-Dollries K, Geraci N, et al. GM-CSF Regulates a PU.1-Dependent Transcriptional Program Determining the Pulmonary Response to LPS. American Journal of Respiratory Cell and Molecular Biology, (2007);36:114–21.

Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. The Journal of experimental medicine, (2007); 24;204(13):3235-45.

Parsot C, Hamiaux C, Page AL. The various and varying roles of specific chaperones in type III secretion systems. Current Opinion in Microbiology, (2003);6(1):7-14.

Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology, (2006);59(4):1114-28.

Steinberger RE, Holden PA. Extracellular DNA in single- and multiple-species unsaturated biofilms. Applied and environmental microbiology, (2005);71(9):5404-10.

Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLOS One, (2012); 7(10):e46718.

Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science, (2002); 22;295(5559):1487.

Sarkar S. Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Applied microbiology and biotechnology, (2020); 104, 6549–6564.

Rybtke M, Jensen PO, Nielsen CH, Tolker-Nielsen T. The extracellular polysaccharide matrix of Pseudomonas aeruginosa biofilms is a determinant of polymorphonuclear leukocyte responses. Infection and Immunity, (2020); 89: e00631-20.

Yang JJ, Tsuei KSC, Shen EP. The role of Type III secretion system in the pathogenesis of Pseudomonas aeruginosa microbial keratitis. Tzu Chi Medical Journal, (2022); 34(1):8–14.

Karash S, Nordell R, Ozer EA, Yahr TL. Genome sequences of two Pseudomonas aeruginosa isolates with defects in type III secretion system gene expression from a chronic ankle wound infection. Microbiology Spectrum, (2021); 9(1).

Alatraktchi FA, Svendsen WE, Molin S. Electrochemical detection of pyocyanin as a biomarker for pseudomonas aeruginosa: A focused review. In Sensors (Switzerland), (2020); 20(18):1–15.

Durán O, Ramos C, Chen O, Castillo J, de Mayorga B, et al. Pyoverdine as an important virulence factor in Pseudomonas aeruginosa Antibiotic Resistance. The Global Antimicrobial Resistance Epidemic - Innovative Approaches and Cutting-Edge Solutions. IntechOpen, (2022). Available from: [http://dx.doi.org/10.5772/intechopen.104222](http://dx.doi.org/10.5772/intechopen.104222)

Khodayary R, Nikokar I, Mobayen MR, Afrasiabi F, Araghian A, et al. High incidence of type III secretion system associated virulence factors (exoenzymes) in Pseudomonas aeruginosa isolated from Iranian burn patients. BMC Research Notes, (2019); 12(1).

Constantino-Teles P, Jouault A, Touqui L, Saliba AM. Role of host and bacterial lipids in Pseudomonas aeruginosa respiratory infections. Frontiers in Immunology, (2022);13.

Bryers JD. Medical biofilms. Biotechnology and Bioengineering, (2008); 1;100(1):1-18.

Pestrak MJ, Chaney SB, Eggleston HC, Dellos-Nolan S, Dixit S, et al.Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLoS Pathogen, (2018); 2;14(2):e1006842.

Trøstrup H, Thomsen K, Christophersen LJ, Hougen HP, Bjarnsholt T, et al. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair and Regeneration, (2013);21(2):292-9.

Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, et al. Biofilms and host response - helpful or harmful. Journal of Pathology, Microbiology and Immunology – the APMIS Journal, (2017); 125(4):320-338.

Hirche TO, Benabid R, Deslee G, Gangloff S, Achilefu S, Guenounou M, et al. Neutrophil elastase mediates innate host protection against Pseudomonas aeruginosa. Journal of Immunology, (2008); 1;181(7):4945-54.

Kirketerp-Møller K, Jensen PØ, Fazli M, Madsen KG, Pedersen J, et al. Distribution, organization, and ecology of bacteria in chronic wounds. Journal of Clinical Microbiology, (2008); 46(8):2717-22.

Lavoie EG, Wangdi T, Kazmierczak BI. Innate immune responses to Pseudomonas aeruginosa infection. Microbes and Infection, (2011); 13:1133–1145.

Raoust E, Balloy V, Garcia-Verdugo I, Touqui L, Ramphal R, et al. Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TOLL- LIKE RECEPTORS-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLOS ONE, (2009); 4: e7259.

Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Human Vaccines & Immunotherapeutics, (2014) ;10(11):3270-85.

Ciornei CD, Novikov A, Beloin C, Fitting C, Caroff M, et al. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immunity, (2010); 16(5):288-301.

Thomsen K, Høiby N, Jensen PØ, Ciofu O, Moser C. Immune response to biofilm growing pulmonary Pseudomonas aeruginosa infection. Biomedicines, (2022); 24;10(9):2064.

Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature, (1995); 6;376(6535):37-43.

Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB. Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. Journal of Immunology, (2004); 15;172(6):3377-3381.

Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature, (2004); 417:552–555.

Bedi B, Maurice NM, Ciavatta VT, Lynn KS, Yuan Z, et al. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa. FASEB Journal, (2017); 31(8):3608-3621.

González-Alsina A, Mateu-Borrás M, Doménech-Sánchez A, Albertí S. Pseudomonas aeruginosa and the complement system: A review of the evasion strategies. Microorganisms, (2023);11,664.

Höpken UE, Lu B, Gerard NP, Gerard C. The C5a chemoattractant receptor mediates mucosal defence to infection. Nature, (1996);383(6595):86-89.

Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in pseudomonas aeruginosa pneumonia. American Journal of Respiratory and Critical Care Medicine, (2005); 171 (11): 1209–1223.

Mishra M, Byrd MS, Sergeant S, Azad AK, Parsek MR, et al. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cellular Microbiology, (2012); 14(1): 95–106.

Casciaro B, Lin Q, Afonin S, Loffredo MR, De Turris V, et al. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH2. FEBS Journal, (2019); 286(19): 3874–3891.

Wilkinson LV, Alford MA, Coleman SR, Wu BC, Lee AHY, et al. Peptide 1018 inhibits swarming and influences Anr-regulated gene expression downstream of the stringent stress response in Pseudomonas aeruginosa. PLOS ONE, (2021); 16.

Batoni G, Maisetta G, Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochimica et Biophysica Acta, (2016);1858(5):1044-60.

Xiao Q, Luo Y, Shi W, Lu Y, Xiong R, et al.The effects of LL-37 on virulence factors related to the quorum sensing system of Pseudomonas aeruginosa. Annals of Translational Medicine, (2022); 10(6):284.

Pulido D, Prats-Ejarque G, Villalba C, Albacar M, González-López JJ, et al. A novel RNase 3/ECP peptide for Pseudomonas aeruginosa biofilm eradication that combines antimicrobial, lipopolysaccharide binding, and cell-agglutinating activities. Antimicrobial Agents and Chemotherapy, (2016); 23;60(10):6313-6325.

Nagant C, Pitts B, Stewart PS, Feng Y, Savage PB, et al. Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa. MicrobiologyOpen, (2013); 2(2):318-25.

Jacobsen AS, Jenssen H. Human cathelicidin LL-37 prevents bacterial biofilm formation. Future Medicinal Chemistry, (2012); 4(12):1587-99.

Birmes FS, Säring R, Hauke MC, Ritzmann NH, Drees SL, et al. Interference with Pseudomonas aeruginosa quorum sensing and virulence by the mycobacterial Pseudomonas quinolone signal dioxygenase AqdC in combination with the N-Acylhomoserine lactone lactonase QsdA. Infection and Immunity, (2019); 19;87(10):e00278-19.

Günday Türeli N, Torge A, Juntke J, Schwarz BC, Schneider-Daum N, et al. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. European journal of pharmaceutics and biopharmaceutics : official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik, (2017); 117:363-371.

Chen Q, Shah KN, Zhang F, Salazar AJ, Shah PN, et al. Minocycline and silver dual-loaded polyphosphoester-based nanoparticles for treatment of resistant Pseudomonas aeruginosa. Molecular Pharmaceutics, (2019); 1;16(4):1606-1619.

Parasuraman P, Antony AP, B SLS, Sharan A, Siddhardha B, et al. Antimicrobial photodynamic activity of toluidine blue encapsulated in mesoporous silica nanoparticles against Pseudomonas aeruginosa and Staphylococcus aureus. Biofouling, (2019);35(1):89-103.

Al-Bakri AG, Mahmoud NN. Photothermal-induced antibacterial activity of gold nanorods loaded into polymeric hydrogel against Pseudomonas aeruginosa biofilm. Molecules, (2019); 24: 2661.

Furfaro LL, Payne MS, Chang BJ. Bacteriophage therapy: Clinical trials and regulatory hurdles. Frontiers in Cellular and Infection Microbiology, (2018); 23;8:376.

Yan J, Mao J, Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, (2014); 28(3):265-74.

Martinez M, Gonçalves S, Felício MR, Maturana P, Santos NC, et al. Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa. Biochimica et Biophysica Acta- Biomembranes, (2019); 1;1861(7):1329-1337.

Mombeshora M, Chi GF, Mukanganyama S. Antibiofilm Activity of Extract and a Compound Isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochemistry research international, (2021); 14:9946183.

Novotny LA, Jurcisek JA, Goodman SD, Bakaletz LO. Monoclonal antibodies against DNA-binding tips of DNABII proteins disrupt biofilms in vitro and induce bacterial clearance in vivo. EbioMedicine, (2016); 10:33-44.




DOI: http://dx.doi.org/10.62940/als.v12i4.3618

Refbacks

  • There are currently no refbacks.