Comparison of Genetic Diversity Indicators in Samples of Artificial and Natural Populations of Russian Sturgeon and Beluga at the Mouth of the Ural River

Nurbek Ginayatov, Vadim Ulyanov, Indira Beishova, Tatyana Ulyanova, Aziza Sidarova, Alexandr Kovalchuk, Bekbol Sariyev, Ulbolsyn Kuzhebayeva, Anna Bakhareva, Kuantar Alikhanov

Abstract


Background: Despite its ecological adaptability, sturgeon exhibits a low nuclear DNA evolution rate, enabling the use of the same primer sets for analyzing different Acipenseriformes species. The purpose of the paper was to analyze the indicators of genetic polymorphism of sturgeon populations in closed water supply systems compared with natural populations for conservation and restoration.

Methods: 147 sturgeon specimens, including Acipenser gueldenstaedtii and Huso huso, were selected from natural populations in the Ural River delta and artificial populations in aquaculture farms. DNA was extracted from fin tissues, and genetic diversity was assessed using seven short tandem repeat markers.

Result: The study showed significant genetic diversity in natural and artificial populations. Natural A. gueldenstaedtii populations demonstrated a higher level of genetic diversity (He=0.871, Ne=8.691) compared with artificial A. gueldenstaedtii populations (He=0.829, Ne=5.980). Similarly, artificial H. huso populations showed lower genetic diversity (He=0.554, Ne=2.704) than natural populations (He=0.663, Ne=3.238).

Conclusion: The analysis showed a deficiency of heterozygotes at many loci due to inbreeding, which highlights the importance of genetic management in aquaculture practice. The results highlight the need to implement genetic management strategies in sturgeon aquaculture to preserve genetic diversity and prevent inbreeding. Regular genetic monitoring and strategic breeding programs are recommended to ensure the sustainability and persistence of cultivated and natural sturgeon populations.

Keywords: Short tandem repeat; DNA polymorphism; Diversity, Huso huso; Acipenser gueldenstaedtii 


Full Text:

PDF

References


Ambreen F, Hashmi MA, Abbas S, Kouser S, Latif F, Javed M. Genotoxic Response of Oreochromis niloticus Exposed to Tertiary Mixture of Pesticides. Advancements in Life Sciences, (2023); 9(4): 384-90.

Ambreen HS, Arshad N, Shahzad MM, Javed GA, Shazadi K, Chaudhury FA. Animal Blood supplemented diet can improve growth performance, body composition and blood profile of Genetically Improved Farm Tilapia (Oreochromis niloticus). Advancements in Life Sciences, (2023); 9(4): 567-73.

Kamelov AK, Sokolskii AF, Alpeisov ShA. Sovremennoe sostoyanie i podkhody k vosstanovleniyu chislennosti osetrovykh Uralo-Kaspiiskogo basseina [Current state and approaches to restoring the number of sturgeon in the Ural-Caspian basin]. 2005; 135-140. Bastau, Almaty.

Matishov GG, Matishov DG, Ponomareva EN, Sorokina MN, Kazarnikova AV, Kovalenko MV. Osnovy osetrovodstva v usloviyakh zamknutogo vodoobespecheniya dlya fermerskikh khozyaistv [Basics of sturgeon farming in closed water supply conditions for farms]. 2008; 112. YuNTs RAN, Rostov-on-Don.

Roques S, Berrebi P, Rochard E, Accolas M. Genetic monitoring for the successful restocking of species with low diversity: The case of the critically endangered European sturgeon, Acipenser sturio. Biological Conservation, (2018); 221: 91-102.

Wirgin I, Roy NK, Maceda L, Mattson M. DPS and population origin of subadult Atlantic sturgeon in the Hudson River. Fisheries Research, (2018); 207: 165-170.

Sytova M. Razrabotka nauchnykh podkhodov razvitiya osetrovogo khozyaistva na osnove proslezhivaemosti produktsii iz osetrovykh ryb [Development of scientific approaches to the development of sturgeon farming based on the traceability of sturgeon products]. Trudy VNIRO, (2016); 159: 143-150.

Chebanov MS, Galich EV. Rukovodstvo po iskusstvennomu vosproizvodstvu osetrovykh ryb [Guidelines for artificial reproduction of sturgeon]. Tekhnicheskie doklady FAO po rybnomu khozyaistvu i akvakulture [The State of World Fisheries and Aquaculture] No. 558. 2013; 325. FAO, Ankara.

Chebanov MS. Formirovanie geneticheskoi kollektsii osetrovykh v yuzhnom filiale FGUP FSGTsR [Formation of a genetic collection of sturgeon in the southern branch of the Federal State Unitary Enterprise Federal Selection and Genetic Center for Fish Breeding]: Genetika, selektsiya i vosproizvodstvo ryb: doklady Pervoy Vserossiyskoy konferentsii. 2002; 73-80. St. Petersburg.

Food and Agriculture Organization of the United Nations. Razvitie akvakultury. 3. Upravlenie geneticheskimi resursami. Tekhnicheskoe rukovodstvo FAO po otvetstvennomu rybnomu khozyaistvu [Aquaculture development. 3. Genetic resource management. FAO Technical Guidance on Responsible Fisheries]. No. 5, Annex 3. 2010; 154. FAO, Rome.

Altukhov YuP. Geneticheskie posledstviya selektivnogo rybolovstva i rybovodstva [Genetic consequences of selective fishing and fish farming]. Voprosy rybolovstva, (2000); 4(8): 562-603.

Ryabova GD, Klimonov VO, Shishanova EI. Geneticheskaya izmenchivost v prirodnykh populyatsiyakh i dometifitsirovannykh stadakh osetrovykh ryb Rossii [Genetic variability in natural populations and domesticated sturgeon stocks in Russia]. Atlas allozimov. 2008; 96. Rosselkhozakademiya, Moscow.

Shishanova EI. Problemy sokhraneniya i ekspluatatsii populyatsii osetrovykh ryb Kaspiiskogo basseina [Problems of conservation and exploitation of sturgeon populations in the Caspian Basin]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, (2009); 1(2): 188-192.

Hauser L, Hemingway KL, Wedderbern J, Lawrence AJ. Mollecular/cellular processes and population genetics of a species: molecular and population response: effects of pollution on fish: molecular effects and population responses. 2003; 256-288. Blackwell Science Ltd., New York.

Cuvin-Aralar ML, Aralar EV. Resistance to a heavy-metal mixture in Oreochromis niloticus progenies from parents chronically exposed to the same metals. Chemosphere, (1995); 30: 953-963.

Kozlova NV. Vliyanie nekotorykh toksikantov na organizm segoletkov sterlyadi [The influence of some toxic agents on the bodies of sterlet young]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta, (2007); 5(40): 252-257.

Abrosimov SS. Stress-faktory i ikh vliyanie na fiziologo-biokhimicheskii status molodi osetrovykh [Stress factors and their influence on the physiological and biochemical status of sturgeon young]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, (2008); 12: 93-98.

Bolshakov VN, Moiseenko TI. Antropogennaya evolyutsiya zhivotnykh: fakty i ikh interpretatsiya [Anthropogenic evolution of animals: facts and their interpretation]. Ekologiya, (2009); 5: 323-332.

Kozlova NV, Bazelyuk NN, Faizulina DR, Stonogina EV. Primenenie molekulyarno-geneticheskikh issledovanii v akvakulture osetrovykh ryb [Application of molecular genetic research in sturgeon aquaculture]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta, (2013); 3: 113-117.

Kuzmin EV, Kuzmina OYu. Polimorfizm lokusa miogenov u nekotorykh predstavitelei semeistva osetrovykh (Acipenseridae) [Polymorphism of the myogen locus in some representatives of the sturgeon family (Acipenseridae)]. Genetika, (2014); 50(9): 1089-1097.

Mamonova AS, Shishanova EI. Geneticheskaya izmenchivost odomashnennykh stad russkogo osetra (Acipenser gueldenstaedtii, Brandt) [Genetic variability of domesticated stocks of Russian sturgeon (Acipenser gueldenstaedtii, Brandt)]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta, (2016); 4: 83-92.

Rozhkovan KV, Chelomina GN, Rachek EI. Molekulyarnaya identifikatsiya i osobennosti geneticheskogo raznoobraziya mezhvidovykh gibridov amurskogo osetra (Acipenser schrenckii × A. baerii, A. baerii × A. schrenckii, A. schrenckii × A. ruthenus i A. ruthenus × A. schrenckii) po dannym izmenchivosti multilokusnykh RAPD-markerov [Molecular identification and features of genetic diversity of interspecific hybrids of Amur sturgeon (Acipenser schrenckii × A. baerii, A. baerii × A. schrenckii, A. schrenckii × A. ruthenus and A. ruthenus × A. schrenckii) according to the variability of multilocus RAPD markers]. Genetika, (2008); 44(11): 1453-1460.

Barmintseva AE, Myuge NS. Ispolzovanie mikrosatellitnykh lokusov dlya ustanovleniya vidovoi prinadlezhnosti osetrovykh i vyyavleniya osobei gibridnogo proiskhozhdeniya [Use of microsatellite loci to establish the species identity of sturgeon and identify specimens of hybrid origin]. Genetika, (2013); 49(9): 1093-1105.

Slukvin AM, Koneva OYu, Lesyuk MI. Geneticheskaya identifikatsiya sterlyadi (Acipenser ruthenus L.), vyrashchennoi v OAO “Rybkhoz “Polese” Pinskogo raiona Brestskoi oblasti, po mikrosatellitnym markeram [Genetic

identification of sterlet (Acipenser ruthenus L.) grown in Rybkhoz Polesie OJSC, Pinsk district, Brest region, using microsatellite markers]. Molekulyarnaya i prikladnaya genetika, (2009); 9: 146-152.

Barmintseva A, Mugue N. Genetic Variation of the Siberian Sturgeon (Acipenser baerii Brandt, 1869) in Aquaculture. Russian Journal of Genetics, (2018), 54: 210-217.

Peleeva AR, Komarova LV, Vasileva YuS. Analiz geneticheskogo raznoobraziya estestvennykh populyatsii i remontno-matochnykh stad sterlyadi na osnovanii polimorfizma mezhmikrosatellitnykh markerov [Analysis of genetic

diversity of natural populations and rearing and breeding stocks of sterlet based on polymorphism of intermicrosatellite markers]. Byulleten nauki i praktiki, (2018); 4(4): 20-29.

Kotov IA, Trofimov OV, Pak IV, Shanskikh AI. Geneticheskii polimorfizm sterlyadi (Acipenser ruthenus), obitayushchei v estestvennykh usloviyakh i vyrashchennoi v usloviyakh zavodskogo vosproizvodstva [Genetic polymorphism of sterlet (Acipenser ruthenus) living in natural conditions and reared under conditions of breeding farm reproduction]. Vodnye bioresursy i sreda obitaniya, (2022); 5(2): 75-82.

Komarova LV, Peleeva AR, Kostitsyna NV, Melnikova AG, Boronnikova SV. Polimorfizm DNK, geneticheskaya originalnost i identifikatsiya populyatsii i remontno-matochnykh stad sterlyadi (Acipenser ruthenus) [DNA polymorphism, genetic originality and identification of populations and rearingand breeding stocks of sterlet (Acipenser ruthenus)]. Vestnik Permskogo universiteta, (2021); 1: 53-60.

Kjartanson SL, Haxton T, Wozney K, Lovejoy NR, Wilson CC. Conservation genetics of lake sturgeon (Acipenser fulvescens): nuclear phylogeography drives contemporary patterns of genetic structure and diversity. Diversity, (2023); 15(3): e.385.

Wirgin I, Fox AG, Maceda L, Waldman J. Two distinct life history strategies of atlantic sturgeon in the Ogeechee river, Georgia. Diversity, (2023); 15(3): 325.

Rozhkovan KV, Chelomina GN, Ivanov SA. Filogeneticheskie svyazi amurskogo osetra Acipenser shrenskii Brandt, 1869 po dannym sekvenirovaniya 18S rDNK [Phylogenetic relationships of the Amur sturgeon Acipenser shrenskii Brandt, 1869 according to 18S rDNA sequencing data]. Tsitologiya, (2009); 51(3): 265-270.

Melnikova MN, Senchukova AL, Pavlov SD. Razrabotka novykh populyatsionno-geneticheskikh markerov dlya vida Parasalmo (Oncorhynchus) mykiss na osnove variabelnosti mezhsatellitnoi DNK [Development of new population genetic markers for the species Parasalmo (Oncorhynchus) mykiss based on intersatellite DNA variability]. Doklady Akademii nauk, (2010); 435(1): 138-141.

Krieger J, Fuerst PA. Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. Molecular Biology and Evolution, (2002); 19(6): 891-897.

Congiu L, Pujolar JM, Foriani A, Cenadelli S, Dupanloup I, Barbisan F, Galli A, Fontana F. Managing polyploidy in ex situ conservation genetics: the case of the critically endangered Adriatic sturgeon (Acipenser naccarii). PLoS One, (2011); 6(3): e18249-1-e18249-10.

Henderson-Arzapalo A, King TL. Novel microsatellite markers for Atlantic sturgeon (Acipenser oxyrinchus) population delineation and broodstock management. Molecular Ecology Notes, (2002); 2: 437-439.

Welsh AB, Blumberg M, May B. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Molecular Ecology Notes, (2003); 3(1): 47-55.

McQuown EC, Sloss BL, Sheehan RJ, Rodzen J, Tranah G, May B. Microsatellite analysis of genetic variation in sturgeon: new primers sequences for Scaphirhynchus and Acipenser. Transactions of the American Fisheries Society, (2000); 129: 1380-1388.

May B, Krueger CC, Kincaid HL. Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Canadian Journal of Fisheries and Aquatic Sciences, (1997); 54(7): 1542-1547.

Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel, population genetic software for teaching and research. Molecular Ecology Notes, (2006); 6(1): 288-295.

Nei M. Genetic distance between populations. The American Naturalist, (1972); 106(949): 283-292.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, (2000); 155(2): 945-959.

Earl DA, vonHoldt BM. Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genetics Resources, (2012); 4: 359-361.

Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, (2007); 23(14): 1801-1806.

Georgescu S, Canareica O, Dudu A, Costache M. Analysis of the microsatellite variation in the common hybrid between Russian Sturgeon (Acipenser Gueldenstaedtii Brandt and Ratzeburg, 1833) and Siberian Sturgeon (Acipenser Baerii Brandt, 1869) from aquaculture. Transylvanian Review of Systematical and Ecological Research, (2014); 15(2): 117-124.

Chassaing O, Hänni C, Berrebi P. Distinguishing species of European sturgeons Acipenser spp. using microsatellite allele sequences. Journal of Fish Biology, (2011); 78(1): 208-226.

Timoshkina NN, Barmintseva AE, Usatov AV, Miuge NS. Intraspecific genetic polymorphism of Russian sturgeon Acipencer gueldenstaedtii. Russian Journal of Genetics, (2009); 45(9): 1250-1259.

Selyukov A, Zhigileva O, Shuman L, Selyukova S, Bogdanova V. Cytomorphological and genetic indicators in the early ontogenesis of the wild and farmed broad white fish (Coregonus nasus). Aquaculture and Fisheries, (2022); 7(2): 211-222.

Study of the genetic diversity of sturgeon fish from the natural environment and grown in aquaculture in the Western region of Kazakhstan.

Dudu A, Georgescu SE, Burcea A, Florescu I, Costache M. Analysis of genetic diversity in Beluga Sturgeon, Huso huso (Linnaeus, 1758) from the Lower Danube river using DNA markers. Scientific Papers: Animal Science and Biotechnologies, (2014); 47(1): 64-68.

Matache R, Holban E, Gyorgy D, Prangate R, Matei M, Boboc M, Popescu R, Nuraiti T. Determination of the hybridization rate of Acipenser stellatus and Huso huso based on microsatellite analysis. IOP Conference Series: Earth and Environmental Science, (2023); 1216: 012011.

Nebesikhina NA, Lepeshkov AG, Ivanova EA, Timoshkina NN. Evaluation of genetic diversity in Russian sturgeon breeders kept at the Don sturgeon farm “Azdonrybvod”. AzNIIRKH Proceedings, (2017); 1: 244-249.

Ulyanov V, Beishova I, Ulyanova T, Sidarova A, Ginayatov N, Kovalchuk A, Chuzhebaeva G, Alikhanov K, Sariyev B, Kuzhebayeva U, Nurzhanova F, Beishov R, Sabyrzhanov A, Bexultan A. Genetic health and diversity assessment of Sturgeon species in Kazakhstan’s aquaculture and natural habitats. German Journal of Veterinary Research, (2024); 4(2): 127-138.

Slukvin AM, Dromashko SE, Balashenko NA, Barulin NV, Barmintseva AE. Study results on the molecular genetic, morphometric and sexual characteristics of the Beluga (Huso huso L., 1758) grown in the aquaculture of the Republic of Belarus. Azerbaijan Journal of Physiology, (2022); (1).

Nebesikhina NA, Lepeshkov AG, Ivanova EA, Timoshkina NN. Assessment of the genetic diversity of Russian sturgeon producers from the broodstock of the federal state budgetary institution "Azdonrybvod" Don Sturgeon Plant, (2017); 244-249.

Roques S, Chancerel E, Boury C, Maud P, Acolas M. From microsatellites to single nucleotide polymorphisms for the genetic monitoring of a critically endangered sturgeon. Ecology and Evolution, (2019); 9(12): 7017–7029.

Karmaliyev R, Nurzhanova F, Sidikhov B, Murzabaev K, Sariyev N, Satybayev B, Abirova I. Epizootiology of Opisthorchiasis in carnivores, fish, and mollusks in the West Kazakhstan Region. American Journal of Animal and Veterinary Sciences, (2023); 18(2): 147-155.




DOI: http://dx.doi.org/10.62940/als.v11i4.3458

Refbacks

  • There are currently no refbacks.