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omato (Solanum lycopersicum) is an essential plant because of its social and economic importance. 
Therefore, research have been focusing on improving tomato production. The introduction of clustered 
regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (CRISPR/Cas9) 

system provides unique opportunities to better understand the gene functions and to rapidly generate new 
tomato cultivars harboring desired traits such as disease resistance, better harvest quality and abiotic tolerance. 
This review aims to provide latest information about the application of CRISPR/Cas9 system on tomato 
breeding. 
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Introduction  

The tomato is a major vegetable crop that has achieved 
tremendous popularity over the last century. It is 
practically grown in every country in the world [1,2]. The 
tomato plant is very versatile, and the crop can be 
divided into two categories; fresh market tomatoes, 
which we are concerned with, and processing tomatoes, 
which are grown only outdoors for the canning industry 
and mechanically harvested. In both cases, world 
production and consumption has grown quite rapidly 
over the past 25 years [3].  

Tomatoes, aside from being tasty, are very healthy as 
they are a good source of vitamins A and C. Vitamin A is 
important for bone growth, cell division and 
differentiation, for helping in the regulation of immune 
system and maintaining surface linings of eyes, 
respiratory, urinary, and intestinal tracts [4]. Vitamin C 
is important in forming collagen, a protein that gives 
structures to bones, cartilage, muscle, and blood vessels. 
It also helps maintain capillaries, bones and teeth and 
aids in the absorption of iron [5]. 

Currently the tomato has a higher consumption rate in 
more developed countries and is often referred to as a 
luxury crop. In Israel, for example, the tomato is such an 
important part of the diet that it is a major part of the 
food basket, which is used when calculating the 
consumer price index. In other words, a scarcity of 
tomatoes can cause the Consumer Price Index to rise 
and influence the inflation rate [6,7]. In developing 
countries, the tomato is becoming a more important 
part of the food basket, but the goal of the farmer is to 
produce quantity not quality so people can eat (what do 
you mean?). As varieties improve and new cultivars with 
better resistance to various diseases are developed, it 
will become easier to grow the crops in more marginal 
conditions and the tomato will become a more 
important part of the diet in poorer countries as well 
[8,9]. 

Methods 

Literature Search and Selection Criteria 
Google Web, Google scholar, NCBI Databases and OMIC 
Tools were used to obtain data for this review paper. 
Different key words were used to retrieve the required 
research articles and bioinformatics-based information, 
such as “CRISPR/Cas9’’ and “CRISPR/Cas9 in tomato’’. 
Research papers consulted for this review were those 
published over last 10 to 15 years and information 
regarding CRISPR/Cas9 application in tomato was 
considered for current review 

Discussion 

Genome editing techniques and its principles 

In the last few decades, progresses in breeding 
approaches, especially forward genetic approaches, 
have played vital roles in elucidating the molecular 
mechanism that control agriculturally important traits 
in tomato. The advantage of conventional plant 
breeding consists of increasing the availability of 
genetic resources for crop improvement through 
introgression of the desired traits [7,10,11]. However, 
some plants are at risk of becoming susceptible to 
environmental stress and losing genetic diversity. Thus, 
traditional cultivation methods are not sufficient to 
resolve global food security issues [12].  

The newly developed technologies in genome-editing 
have overcome the limitations of traditional breeding 
methods in elaborating functional genomics and crop 
improvement in tomato. These genetic innovations 
provide more accurate, timesaving, efficient targeted 
genomic modifications, including whole-gene insertion 
or deletion, stacking, or pyramiding of genes, in a 
transgene-free manner [13-15].  

Gene editing is a molecular biology technique that 
intentionally targets user-defined DNA sites within the 
genome for the purpose of elucidating functions of 
unknown genes. Since modified genetic information in 
the parental lines is passed to next generations, gene 
editing can be employed to purposely alter traits of 
agricultural importance to develop new cultivars or 
breeding lines [1,16].  Various gene editing techniques 
have been established including zinc finger nuclease 
(ZFN), transcription activator-like effector nuclease 
(TALEN) and cluster regularly interspaced short 
palindromic repeats (CRISPR)/CRISPR-associated 
protein 9 (Cas9) (CRISPR/Cas9) [8]. All these tools rely 
on the specificity of the endonucleases that recognize 
and cleave DNA at desired sites to facilitate mutations 
induced by cellular repair mechanism. In this review, we 
aim to provide the latest updates of CRISPR/Cas9 
application on swine breeding (what do you mean?), 
although TALEN and ZFN can obtain the same outcomes 
[3,17].  

ZFN and TALEN are two early gene editing techniques 
that employs similar conceptual nuclease structure to 
introduce genetic mutation. Both systems depend on 
the specificity of the DNA-binding domain of zinc finger 
protein (ZFP) in the ZFN system and transcription 
activator-like effector (TALE) in the TALEN system. 
Since each zinc finger in the ZFP recognizes every triplet 
on single-strand DNA, designing 3-6 zinc finger 
components in combination will therefore attach to 9-
18 base pairs on aimed regions to achieve specificity 
[18]. On the other hand, the improved targeting property 
of TALE relies on the programmable tandem repeat 
modules, of which each module specifically binds to a 
single base pair. The order of the tandem repeat modules 
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can be rearranged to obtain better directing at chosen 
DNA sequence. After the binding to DNA region, both 
ZFP and TALE will orchestrate the dimerized 
endonuclease Fok1 to break the double strand DNA at 
predetermined regions [7,19].  

The introduction of DSB generated by ZFN and TALEN 
will trigger the DNA repair mechanisms including non-
homologous end-joining (NHEJ) or homologous 
recombination (HR) [20]. In the error prone NHEJ 
pathway, the two ends of the cleaved DNA are joined and 
ligated, resulting in the generation of insertion or 
deletion at the site of DSB, thus producing knock-out 
mutation [17].  In the HE pathway, a site-directed 
nuclease and an exogenous DNA template harboring 
homologous sequence to the DSB regions are required to 
facilitate the insertion of single or multiple transgenes, 
thereby gaining knock-in mutation. Accumulation of 
reports has demonstrated the successful application of 
ZFN [4,21].  

The latest CRISPR/Cas9 is extensively employed in 
genome editing research thanks to its reliability, 
efficiency, and simplicity [22]. Basically, CRISPR/Cas9 is 
a RNA- mediated adaptive immune system that can be 
found in bacteria, and archaea [23]. This immune 
protection provides resistance against genetic attacks 
and later stores infection histories in a form of spacer 
sequences for future safety. These spacers function in 
concert with Cas9 endonuclease proteins to monitor, 
recognize and degrade exogenous DNA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This process can be divided in three stages: spacer 

acquisition, biogenesis, and immunity. In the spacer 
acquisition stage, the foreign DNA is identified, 
captured, and embedded into the CRISPR locus in a form 
of spacer. Subsequently, the expression of the 
CRISPR/Cas9 system will be initiated in the biogenesis 
stage, in which the primary CRISPR-RNAs (crRNAs) is 
synthesized from the CRISPR locus and subsequently 
undergone many processes to become crRNAs. Finally, 
in the immunity stage, the crRNAs, together with the 
trans-activating RNAs (tracrRNAs), will associate with 
Cas9 endonuclease, forming a ribonucleotide complex. 
This complex will initiate interference and consequent 
degradation of the targeted foreign DNA by base pairing 
recognition mechanism and endonucleases, 
respectively.  

It was not until the work of Jinek et al., the significant 
contribution of CRISPR/Cas9 technology to genome 
editing begins to emerge by the establishment of the 
programmable version of CRISPR/Cas9 [24]. This 
modified version of CRISPR/Cas9 is made up of the 
customizable single strand RNA (sgRNA), which is the 
fusion product of crRNA and tracrRNA, the recombinant 
Cas9 protein and. This combination will result in 
Cas9/sgRNA complex that targets and initiates DSB at 
specific DNA sequences. Once DSBs are introduced, 
NHEJ or HDR strategy is activated to repair the DNA 
damages, leading to gene knockout, or gene knock-in, 
respectively [12,25]. CRISPR/Cas9 system has been 

Target gene Gene function or phenotype Classification of targeted gene Reference 
SIALS1, SIALS2 Herbicide resistance Abiotic stress [31] 
SIJAZ2 Bacterial speck resistance Biotic stress [32] 
APETALA2, NONRIPENING 
FRUITFUL Fruit development and ripening Harvest quality [3] 

PECTATE LYASE 
POLYGALACTURONASE 2A 
BETA GALACTANASE 

Fruit color and firmness Harvest quality [7] 

SINPR1 Drought tolerance Abiotic stress [21] 
CBF1 Chilling tolerance Abiotic stress [16] 
SIGRAS8 Fruit development Harvest quality [5] 
Solyc08075770 Fusarium susceptibility Biotic stress [8] 
lncRNA1459 Fruit ripening Harvest quality [15] 
SIDML2 Fruit ripening Harvest quality [33] 
COAT PROTEIN 
REPLICASE FROM TYLCV Viral resistance Biotic stress [34] 

RIN Fruit ripening Harvest quality [35] 
OVATE 
FASCIATED 
FRUIT WEIGHT 2.2 
MULTIFLORA 

Fruit shape 
Fruit size 
 
Fruit number 

Harvest quality [36] 

SIORRM4 Fruit ripening Harvest quality [37] 
SIMAPK3 Drought tolerance Abiotic stress [38] 
PSY Fruit color Harvest quality [39] 
SIMlo1 Powdery mildew resistance Biotic stress [40] 

Coilin gene 
Viral resistance 
Osmotic and salt tolerance Abiotic and biotic stress [41] 

StALS1, StALS2 Herbicide resistance Abiotic stress [42] 
Fasciclin-like arabinogalactan protein Root hair development under phosphorus stress Abiotic stress [43] 
eBSV Viral resistance Biotic stress [44] 
SPF5 loss of day-length-sensitive flowering Harvest quality [45] 

Table 1: The application of CRISPR/Cas9 in tomato breeding improvement. 
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widely employed in various research model research, 
including Prokaryotes (Escherichia coli) [26] and 
Eukaryotes (Saccharomyces cerevisiae, Drosophila 
melanogaster, Caenorhabditis elegans, Arabidopsis 
thaliana, etc.) [27-30]. 

Conclusion 
Tomato is an important source for the increasing 
demand for better quality and quantity for human daily 
consumption. As a result, tomato production is required 
to enhance its productivity and reduce environmental 
impacts. So far, a great amount of achievements have 
been obtained in many research. With the emergence of 
CRISPR/Cas9 system, tomato breeders and researchers 
are offered a novel tool to rapidly understand traits of 
great economic significance. It is hoped that 
CRISPR/Cas9 system will accelerate the research 
progress in tomato industry in the next coming decades.    
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