Volume 5, Issue 1

Advancements in Life Sciences, volume 5, issue 1

Published online: 25-November-2017
ISSN 2310-5380 

IN THIS ISSUE

 

Short Communications:


Phytochemical and biological screening of Berberis aristata

Muhammad Rizwan, Alamgir Khan, Hira Nasir, Aslam Javed, Syed Zawar Shah, pages 01-07
Read Abstract

 Background: Berberis aristata occupies significant position as a medicinal plant. Given its clinical applications and the grave concern of weed based crop damage in Pakistan, the plant was investigated for its antimicrobial and allelopathic activities. Methods: Fresh Berberis aristata plant was obtained from Rawalakot and Hajeera (District Poonch) Azad Kashmir. Methanolic extract preparation and phytochemical analysis was done using standard procedures. Antibacterial and antifungal activities of the root, stem and leaf extracts of the plant were assayed against the bacterial strains E. coli, S. typhi, S. aureus, Shigella, Citrobacter, P. vulgaris, Enterobacter, S. pyrogenes, V. cholera and Klebsiella spp. and fungal strains A. niger,Cladosporium, Rhizoctonia, Alternaria, Trichoderma, Penicillium, Curvularia, Paecilomyces and Rhizopus using disc diffusion method. Also, the phytoxicity of the extracts was evaluated against Lemna minor and the data was recorded after seven days. Results: Phytochemical screening of the three extracts identified the presence of alkaloids, reducing sugars, steroids, flavonoids, terpenoids, glycosides and saponins while tannins were found to be absent. The leaf extract also showed negative tests for alkaloids and steroids. The extracts significantly inhibited the growth of the employed microbial isolates. The leaf extract, however, was not active against A. niger, Curvularia, Paecilomyces and Rhizopus. For most of the tested strains, the effectiveness of the extracts was much higher than that of Amoxicillin and Fluconazole; the positive controls used for bacterial and fungal cultures, respectively. All the extracts demonstrated 100% phytotoxicity against Lemna minor at 1000 μg/mL while low activity (10-20%) was observed at 10 μg/mL and 100 μg/mL, respectively. Conclusion: The results strongly support the profound ethnobotanical applications of this plant and also demonstrate its potential Anchorfor use in weed control strategies. 

download pdfview article in html

 

Identification and Antimicrobial Susceptibility Profile of Bacterial Pathogens Isolated From Wound Infections in a Teaching Hospital, Peshawar, Pakistan

Ibrar Khan, Naveed Sarwar, Bashir Ahmad, Sadiq Azam, Noor Rehman, pages 08-12
Read Abstract

 Background: The resistance profile of bacteria causing wound infections may vary from time to time in a given geographical location. The key objective of this study was to determine the prevalent aerobic and or facultative anaerobic bacterial types and their antibiogram to commonly prescribed antibiotics. Methods: Pus, drainage or wound swabs from various body parts of 200 patients were aseptically collected from Khyber Teaching Hospital (KTH) and processed by standard microbiological techniques for identification of bacterial isolates and later antimicrobial susceptibility profile was determined as per Clinical and Laboratory Standard Institute (CLSI) guidelines by using Kirby-Bauer method. Results: Out of 200 clinical wound specimens processed, Staphylococcus aureus was the most common bacterial pathogen isolated (n=100, 50%), followed by Escherichia coli (n=45, 22.5%),Pseudomonas aeruginosa (n=35, 17.5%), Enterobacter species (n=14, 7%), Proteus species (n=5, 2.5%) and Morganella species (n=1, 0.5%). Staphylococcus aureus (n=100) showed highest resistance to amoxicillin (82%), followed by ofloxacin (80%), sparfloxacin (78%), ciprofloxacin (71%), levofloxacin (46%) and Gentamicin (34%). Out of 100 S. aureus isolates methicillin and vancomycin resistance was found to be in 1.5 and 2% of the isolates, respectively. Among Gram negative isolates (n=100) the vast majority were resistant to augmentin, followed by cephalosporins, quinolones and almost fairly susceptible to carbapenems, cefoperazone + sulbactam and aminoglycosides. Conclusion: There is a need for judicious use of antibiotics in clinical setup. The periodic monitoring of bacterial pathogens and their susceptibility profile is very helpful in understanding the resistance phenotypes in a given area which ultimately help physicians in selecting suitable empirical therapy. 

download pdfview article in html

 

Review Article


Potential impact of microbial consortia in biomining and bioleaching of commercial metals

Komal Ijaz, Javed Iqbal Wattoo, Basit Zeshan, Tanveer Majeed, Tanzeela Riaz, Sehar Khalid, Sahajahan Baig, Mushtaq A. Saleem, pages 13-18

Read Abstract

 Biomining is the use of microorganisms for the commercial extraction of lavish metals from ores and mines with least effect on environment. Microbes play vital role in bioleaching procedures in commercial mining. The bacterial cells are used to detoxify/replace waste cyanide, marginal biomass and activated carbon. These methods are preferred over conventional techniques due to energy efficient, low cost, environment friendly and production of useful by-products. At industrial scale, different microbial strains (Acidophilic, Sulphobacillus, Rhodococcus, Ferrimicrobium &chemolithotrophic) are deployed to boost the processes of copper and uranium bioleaching. About 20% of the world’s copper is extracted by using this technique. These extraction procedures involve oxidation of insoluble metal sulphides to soluble sulphates. The isolation of thermophilic microbes for mineral biooxidation increase the commercial extraction of minerals at industrial scale. The conventional pyrometallurgical techniques have environmental concerns as they result in depletion of high grade ores and release harmful gaseous. The microbe-assisted gold mining is expected to double the yield of gold and needs to be fully explored using diverse array of microbes. Bioleaching is simple and low cost method for the developing countries with large ore deposits. About 30 strains of microbes have been discovered so for with potential impact on bioleaching. With advances in molecular genetics, physiology and microbial genomics, more promising strains with increased bioactivities are possible. Further efforts are underway to culture diverse range of archaea and improving its genetic potential to be used as industrial tool for commercial bioleaching. The currents review enlightens the recent trends in biomining/bioleaching and implementation of modern biological approaches to engineer target microbes for commercial use. 

download pdfview article in html

 

 

 

 

Full Length Research Articles


Optimization of sulphuric acid pre-treatment of Acacia saw dust through box-bhenken design for cellulase production by B. Subtilis

Aasiya Anjum, Muhammad Irfan, Fouzia Tabbsum, Hafiz Abdullah Shakir, Javed Iqbal Qazi, pages 19-24

Read Abstract

 Background: Cellulases are enzymes which are capable of degrading lignocellulosic biomass. The current study is centred on optimization of dilute sulphuric acid pre-treatment of Acacia saw dust for maximizing cellulase production (CMCase and FPase). Hydrolysis or saccharification of lignocellulosic biomass is brought about by cellulases and the sugar thus released can be used for further bioethanol production. Methods: Box- Bhenken design (BBD) was employed for optimization of pre-treatment conditions for Acacia saw dust. Three variables i.e. sulphuric acid concentration (0.6%, 0.8% and 1.0% v/v), substrate concentration (5%,10% and15%)  and reaction time (4h,6h and 8h) was optimized. The pre-treated saw dust was used in the study as a substrate for producing cellulase enzyme through submerged fermentation by Bacillus subtilis (K-18). Results: An optimum conditions i.e. (0.8% H2SO4 conc., 15% substrate conc. and 4h of reaction time) yielded highest filter paper activity (1.3617 IU/ml/min) and CMCase activity (0.7783 IU/ml/min). The suggested model was significant as revealed by F-value, coefficient of determination (R2) andP-valueConclusion: Results concluded that pre-treated substrate (Acacia sawdust) significantly increased cellulase production as compared to untreated substrate that could be utilized for further biofuel production. 

download pdf

view article in html

          

          

 

 

Genetic diversity and phylogenetic relationship in different genotypes of cotton for future breeding

Jehan Bakht, Marina Iqbal, Mohammad Shafi, pages 25-29

Read Abstract

 Background: To make the plants well adapted and more resistant to diseases and other environmental stresses there is always a need to improve the quality of plant’s genome i.e. to increase its genetic diversity. Methods: In the present study six variety and six lines of cotton were investigated for their genetic diversity and phylogenetic relationship. For this purpose 35 different RAPD primers obtained from the Gene Link Technologies, USA were used. Results: Among 35 RAPD primers, 13 primers produced reproducible PCR bands while the rest failed to show any amplification product. Our results indicated that the total count of the reproducible bands was 670 and polymorphic loci were counted to be 442 which constitute 66% of total loci. Phylogenetic analysis revealed two major groups each consists of 7 and 5 genotypes respectively. Genotypes Lp1 and Tp4 were placed at maximum genetic distance and in separate groups and could be utilized for future cotton breeding. Conclusions: RAPD analysis is a cheaper and time saving technique for the determination of genetic diversity of different cotton genotypes. Cotton genotype Lp1 and Tp4 could be the best candidates for future breeding programs as both genotypes are genetically distant from each other. 

download pdf

view article in html